Strong Stability of KAM Tori
نویسندگان
چکیده
In this paper, we prove the strong stability of Diophantine KAM tori in the view of viscosity solutions of Hamilton-Jacobi equations.
منابع مشابه
Fast Numerical Algorithms for the Computation of Invariant Tori in Hamiltonian Systems
In this paper, we develop numerical algorithms that use small requirements of storage and operations for the computation of invariant tori in Hamiltonian systems (exact symplectic maps and Hamiltonian vector fields). The algorithms are based on the parameterization method and follow closely the proof of the KAM theorem given in [LGJV05] and [FLS07]. They essentially consist in solving a functio...
متن کاملPeriodic Solutions and KAM Tori in a Triaxial Potential
The existence and stability of periodic solutions for an autonomous Hamiltonian system in 1:1:1 resonance depending on two real parameters α and β is established using reduction and averaging theories. The different types of periodic solutions as well as their bifurcation curves are characterized in terms of the parameters. The linear stability of each periodic solution, together with the deter...
متن کاملSuperexponential Stability of Kam Tori
We study the dynamics in the neighbourhood of an invariant torus of a nearly integrable system. We provide an upper bound to the diiusion speed, which turns out to be of superexponentially small size exp(exp(?1=%)), % being the distance from the invariant torus. We also discuss the connection of this result with the existence of many invariant tori close to the considered one.
متن کاملField Theory and Kam Tori
The parametric equations of KAM tori for a l degrees of freedom quasi integrable system, are shown to be one point Schwinger functions of a suitable euclidean quantum eld theory on the l dimensional torus. KAM theorem is equivalent to a ultraviolet stability theorem. A renormalization group treatment of the eld theory leads to a resummation of the formal pertubation series and to an expansion i...
متن کاملUniversità Degli Studi Roma Tre Facoltà
In [Féj04] Jacques Féjoz completed and gave the details of Michel Herman’s proof of Arnold’s 1963 theorem on the stability of planetary motions. This result provided the existence of maximal invariant tori for the planetary -body problem, with , in a neighborhood of Keplerian circular and coplanar movements, under the hypothesis that the masses of the planets are sufficiently small with respect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006